
iSim Final Project: Theremin

Lisa Joelle Hachmann
Franton Lin

December 17, 2014

Figure 1: Leon Theremin playing a theremin

Abstract

We created a theremin using ultrasonic transducers, filters, a demodulator, and an Arduino.
A theremin is an electrical instrument that generates a pitch based on the distance between the
user’s hand and an antenna/sensor. We used the ultrasonic transducers to measure the distance
to the hand. The Arduino takes the processed signal to calculates the distance to the hand
and then outputs an audio signal at a frequency proportional to the measured distance. Our
theremin can directly power a small speaker or be connected to other devices/amplifiers via a
3.5mm headphone jack.

1 The Circuit

Figure 2: Schematic

1

Figure 3: Active band pass filter schematic

1.1 Band Pass Filters

See Figure 3 for the schematic used to analyze the system.
Let:

Z1 = R1 + C1Z2 =
1

1
R2 + 1

C2

Z1 = R1 +
1

jwC1

Z2 =
1

1
R2

+ 1
1

jwC2

The circuit analysis then is:

V in− V

Z1
=

V − V o

Z2
V o

V in
=

−Z2

Z1

V o

V in
=

−1
jwC2+ 1

R2

R1 + 1
jwC1

V o

V in
=

−R2
1+jwR2C2

jwR1C1+1
jwC1

V o

V in
=

jwC1

1 + jwR1C1
∗ −R2

1 + jwC2R2
V o

V in
=

jwC1R1

1 + jwR1C1
∗ 1

1 + jwR2C2
∗ −R2

R1

High pass = jwC1R1
1+jwR1C1

Low pass = 1
1+jwR2C2

2

Amplitude = −R2
R1

Band pass filter = Low pass* High pass * Gain

10
4

10
5

−40

−20

0

20

40

60

80

A
m

pl
itu

de
 (

dB
)

Frequency (Hz)

data
analysis

10
4

10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

P
ha

se
 (

D
eg

re
es

)

Frequency (Hz)

data
analysis

Figure 4: Bode plot of data and analysis of the four active band pass filters before demodulation

Figure 5: Low Pass Filter Schematic

After filtering and demodulating the received signal, we used a low pass filter to remove any
remaining 40khz noise. The circuit analysis is as follows: Let R1 and C1 be Z1 and Z2, respectively.

3

Using the voltage divider rule
Vout

Vin
=

Z2

Z1 + Z2

Substituting in R1 for Z1 and 1
jωC1 for Z2, we get

Vout

Vin
=

1

jωR1C1 + 1

10
1

10
2

10
3

10
4

10
5

10
6

−60

−40

−20

0

Bode Plot Response of the Low Pass Filter

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

10
1

10
2

10
3

10
4

10
5

10
6

−100

−50

0

Frequency (Hz)

P
h

a
s
e

 (
d

e
g

.)

Measured Data

Predicted Data

Measured Data

Predicted Data

Figure 6

1.2 Sound Output

The red block shown in Figure 2 is part of the circuitry that deals with mapping the voltage and
outputting sound. First, the output of the earlier circuitry goes into the Arduino, which averages
out the distances and maps them to notes, which is then passed to a digital pin to a speaker or
headphone.

The voltage peak from the ultrasonic range finder is passed to the arduino, which averages
out 10 readings from the PING sensor before calculating which corresponding note to play. The
reasoning here was that without the averaging, the theremin would play every note, and it was both
very difficult to play consistently and it would rapidly change pitch while the musician puts his/her
hand into the theremin’s range. The averager also does not allow the theremin to play unless the
majority of the 10 current readings are positive distances. This eliminated both problems of the
difficulty level in playing the instrument and the theremin idly playing.

4

Figure 7: Arduino Serial Monitor of measured distance in cm

2 The Results

In order for the Arduino to correctly read the amplitude of the Ping response, a demodulation
circuit was implemented right after the band pass filtering. We also implemented another low pass
filter to remove any remaining 40kHz signal after demodulation. The results are shown in Figures
9, 9, and 10. See video attached in folder to see the theremin in action.

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

Time (millisec)

V
o

lt
a

g
e

Ping response before Demodulation

Figure 8

5

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

Time (millisec)

V
o

lt
a

g
e

Ping response after Demodulation

Figure 9

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

Time (millisec)

V
o

lt
a

g
e

Ping response after Demodulation and Filtering

Figure 10

6

3 Reference - Arduino Code

theremin.ino

void delayMilliseconds(int ms) {

for (int i = 0; i < ms; i++) {

delayMicroseconds(1000);

}

}

void stopTransducer()

{

cli();

TCCR1B = 0;

sei();

digitalWrite(9,LOW);

digitalWrite(10,LOW);

}

void startTransducer(float freq, float dutyCycle)

{

if (dutyCycle > 0.5) dutyCycle = 0.5;

else if (dutyCycle < 0) dutyCycle = 0;

cli();

TCCR1B = _BV(WGM13) | _BV(CS10) | _BV(ICNC1);

long topv = (long) ((float) F_CPU /(freq * 2.0 * 1.0));

ICR1 = topv;

OCR1A = (int) ((float) topv * dutyCycle);

OCR1B = (int) ((float) topv * (1 - dutyCycle));

DDRB |= _BV(PORTB1) | _BV(PORTB2);

TCCR1A = _BV(COM1A1) | _BV(COM1B1);

sei();

}

const float SPEED_OF_SOUND_20C = 0.0003432; //per micro-second

const int RESTING = 33;

const int NUMREADINGS = 15;

int a = 0;

unsigned long t_start = 0;

unsigned long t_peak = 0;

unsigned long t = 0;

int v_peak = 0;

float d = 0;

int index = 0;

float total = 0;

float avgDist = 0;

float pastDist[NUMREADINGS];

int play;

int numRelevant = NUMREADINGS;

7

void setup()

{

Serial.begin(9600);

pinMode(10, OUTPUT);

pinMode(6, OUTPUT);

pinMode(8, OUTPUT);

for(int i = 0; i < NUMREADINGS; i++)

pastDist[i] = 0;

}

void loop()

{

startTransducer(40150.0, 0.5);

delayMicroseconds(200);

stopTransducer();

v_peak = 0;

t_start =micros();

t_peak = t_start;

for (int i = 0; i < 120; i++) {

a = analogRead(A0);

t = micros();

if (a > v_peak && abs(v_peak - a) > 8) {

t_peak = t;

v_peak = a;

}

}

t = t_peak - t_start;

if (v_peak > RESTING + 50) {

d = (float) t * SPEED_OF_SOUND_20C / 2.0 * 100.0;

}

else {

d = -1;

}

// subtract the last reading if it is not -1:

if(pastDist[index] > -1)

total = total - pastDist[index];

else

numRelevant++; // keep track of how many non -1 values we measured

// read from the sensor:

pastDist[index] = d;

// add the reading to the total if it is not -1:

if(pastDist[index] > -1)

total = total + pastDist[index];

else

numRelevant--; // keep track of how many non -1 values we measured

8

// advance to the next position in the array:

index = index + 1;

// if we’re at the end of the array...

if (index >= NUMREADINGS)

index = 0; // ...wrap around to the beginning

// calculate the average:

avgDist = total / numRelevant;

//Serial.println(v_peak);

Serial.println(avgDist, 3);

if(d > 0 && numRelevant > NUMREADINGS/2 && avgDist <= 50)

{

play = map(avgDist*100, 5*100, 50*100, 1047, 262); //C6: 1047

tone(8, play);

}

else

{

noTone(8);

}

}

9

	The Circuit
	Band Pass Filters
	Sound Output

	The Results
	Reference - Arduino Code

